

A premier aerospace and defense company

A High Efficiency Inertial CO₂ Extraction System (ICES)

Dr. Anthony Castrogiovanni, Dr. Vladimir Balepin, Andrew Robertson, and Bon Calayag

Presented at the

NETL CO₂ Capture Technology Meeting Pittsburgh, PA Advanced Research Projects Agency • ENERGY July 11, 2012

Company Backgrounds

- ATK is a leading aerospace & defense contractor
- ATK GASL in Ronkonkoma, NY operates the ATK Center for Energy and Aerospace Innovation
- Expertise and research interests include :
 - Aerospace propulsion
 - Carbon capture
 - Hydrogen fueled vehicles
 - Clean coal technologies
 - Oil recovery solutions

- ACENT is a small business dedicated to applying expertise in aerospace and defense to clean energy challenges
- Founded in 2007, ACENT is developing technologies in CO₂ capture, algal biomass, hydrogen vehicles, and enhanced oil recovery

• ICES utilizes some methods developed under a DOE SBIR with ACENT

Funding Summary:

 ARPA-e:
 \$ 2,693 K

 ATK and ACENT Cost Share:
 \$ 632 K

 NYSERDA (New York State)
 \$ 200 K

 TOTAL
 \$ 3,525 K

Project Performance Dates:

Phase 1:July 2010 – March 2011 (completed)Phase 2:July 2011 – June 2013 (ongoing)

Project Participants:

Alliant Techsystems (ATK) ACENT Laboratories LLC WorleyParsons

- Demonstrate proof-of-concept of aero-thermodynamic
 CO₂ condensation and separation
- Develop and benchmark analysis tools with experimental data to enable:
 - Scaling of demo system to power plant size
 - Projection of economics in terms of COE and parasitic loads
- Provide basis for next-phase slip-stream testing with real flue gas
 - Minimize flue gas pressurization requirements
 - Maximize CO₂ capture (>90% goal)

ICES Technology Fundamentals

- Pulverized coal power plant flue gas contains ~16% CO₂ in gaseous form at low pressure
- In ICES we compress flue gas to a moderate level and use the low temperature created by supersonic expansion to freeze the CO₂ in the flow
- ICES uses turning induced in the flow to inertially separate the solid particles from the gas stream
- We capture and collect the CO₂ (as dry ice) and then process using a self-pressurization system exploiting power plant waste heat

ICES on a P-T Diagram – Supersonic Expansion ATK

ICES Integration in PC Plant

ICES System Schematic

ICES Economic Impact

- ICES operating costs are driven by flue gas pre-compression
- Pressure recovery factor = P_{22}/P_{19}
- Low CapEx/OpEx combined with low power consumption result in a projected cost of electricity increase for CO₂ capture just over 1/3 that of the amine process
- <u>Compression to 2,250 psi from low</u> <u>grade waste heat (constant volume</u> heat addition to solid). Cost is limited to CAPEX + energy to move media.

Metric	ICES	Amine
COE % increase	35%	81%
Parasitic Load	12.5%	21.5%
Cost per ton of CO ₂ avoided	US\$ 27	US\$ 68

Energy Consumption

A premier aerospace and defense company

Process	Minimum Energy [kJ/kg CO ₂]	ICES [kJ/kg CO ₂]	Amine [kJ/kg CO ₂]
Separation	-175	-683*	-
CO ₂ Compression	-247	~68**	-
Total	-422	-751	-1,506

* Pre-compression of flue gas to 2 bar (absolute)

** + Approximately 760 kJ/kg of low grade waste heat used to compress CO_2 from solid phase to 2,250psia

Compression energy is nearly "economically free" but it is not "thermodynamically free" i.e. this energy would otherwise be wasted

ICES Plant Integration and Footprint

A premier aerospace and defense company

An ICES system sized for 545MW-equivalent flue gas contains twelve 60" ICES units (flue gas compression not shown)

L= 183 ft W= 60 ft H = 70ft

ICES is projected to have a significantly smaller footprint and complexity compared to competing CO₂ capture technologies and hence significantly lower capital and maintenance costs

- No moving parts (after start)
- No chemicals/additives or other consumable media
- No refrigeration expense low temperatures from supersonic expansion
- Inexpensive construction (concrete, sheet metal)
- Small footprint
 - ICES units in test are equivalent to 0.3-0.6 MW slip stream
 - The latest unit (0.3 MW) is 24" x 24" x 3"
- Small size enables distributed deployment for other process applications in the petroleum and chemical industries
- Availability of "cold sink" in solid CO₂ accumulated

- Development of optimized supersonic contour to maximize particle size/migration and minimize pressure losses
- Minimization of "slip gas" that is removed with solid CO_2
- CO₂ purity unknowns other flue gas impurities that condense will be removed with the CO_2
- Solid CO₂ management/self pressurization
- This really is rocket science....but once the design is complete, it is easy and inexpensive to build and operate

Project Status – Phase 1

Phase 1 data showed good CO₂ condensation and apparent, but erratic migration due to unsteady and separated flow

We recently changed to a 2D version of ICES

Gen5 Test Article Design – ATK Installation

A premier aerospace and defense company

laborato

Test Data Comparison to CFD – Static Pressure (AT

ATK

Laser Particle Imaging Diagnostic

1, 10, and 100 Micron Particle Trajectories

A premier aerospace and defense company

At 10 microns+ particles separate and coalesce allowing for a slender capture slot

Three modes in typical ICES test

A premier aerospace and defense company

Optical and CO_2 sampling results show condensation as expected, but less than desired migration evident. Particle size does not appear large enough in these tests

Condensate Particle Size Control

 Classical nucleation theory provides basis for predicting critical condensate cluster size and subsequent growth rate:

$$r^* = \frac{2\sigma}{\rho_c RT \ln\left(\frac{p_v}{p_s}\right)} \qquad \qquad \frac{dr}{dt} = \alpha \left[1 - \left(\frac{p_v}{p_s}\right)^{\left(\frac{r^*}{r} - 1\right)}\right] \left(\frac{m_c}{\rho_c}\right) \left[\frac{p_v}{(2\pi \bar{m}_c kT)^{1/2}}\right]$$

Both are strong function of the saturation ratio (S) = partial pressure of ٠ vapor/saturation pressure (p_v/p_s)

- Maximum initial cluster size near S=1
- Desirable to grow these clusters versus nucleating new ones at higher S
- Nozzle contour shape needs to be optimized for this purpose
- Need to further increase residence time of flow in this critical region
- Increasing scale toward power plant size will help

Remaining portion of Phase 2

- Investigate flow seeding with solid CO₂ (self generated) and other media to promote large particle formation (ongoing)
- Update contour to further optimize particle size
- Integration of capture duct to remove CO₂
- Integration of diffuser to return flow to atmospheric pressure with minimal losses
- "Phase 3"
 - Ideal next step desired is a slip stream test, e.g. at the National Carbon Capture Center (NCCC)

- Three ICES configurations have been developed and tested to date
- Demonstrated clean nozzle flow with low apparent losses (to be verified with later diffuser tests)
- Demonstrated supersonic condensation with some migration
- Plans in place to increase particle size to achieve desired migration performance

ARPA E:

Dr. Karma Sawyer, Dr. Scott Litzelman, Dr. Daniel Matuszak, Dr. Mark Hartney

NYSERDA:

Dr. Barry Liebowitz

ATK & ACENT Labs:

Dr. Pat Sforza, Troy Custodio, Vincenzo Verrelli, Skip Day, Dean Feola, Ed Mihalik, Florin Girlea, Kirk Featherstone, Fred Gregory, Randy Voland

A premier aerospace and defense company

BACKUP

Schematic of Condensation Process

A premier aerospace and defense company

 $S = p_s / p_v$, where p_v is the partial pressure of the vapor and p_s is the vapor saturation pressure at the temperature of the system.

